

Optimal Electricity Procurement Enabled by Privacy-Preserving Samples

Wenqian Jiang and Chenye Wu*

Prepared for 2024 SDS Doctoral & Postdoctoral Academic Forum

香港中文大學(深圳)理工學院
School of Science and Engineering

Ubiquitous Samples in Power System Operation

- The legacy grid has been working admirably over a century.
- New components are coming and reshaping everything.
- Data/Samples in power system is almost everywhere.
- The profusion of data paves the way for smart grid operations and electricity market optimization.

Question: How Do Samples Facilitate Decision-Making Involving Distribution Estimations?

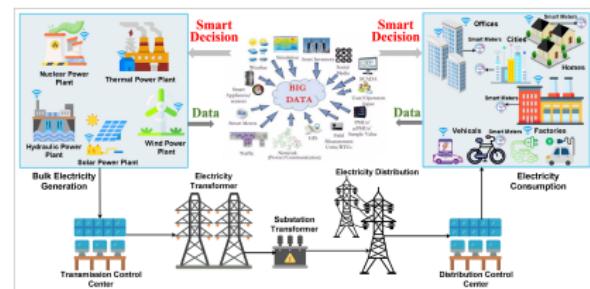


Figure: Samples are Changing Traditional Power System Operation.

The Impact of Samples on Decision-making

- Optimal solutions rely on key distribution knowledge.
- More samples improve distribution characterization.
- How many samples are sufficient to ensure "good" solutions?
- If there exist **noises** in samples, e.g., measurement noises or DP-based noise injection, **what is the impact on the minimum required number of samples?**

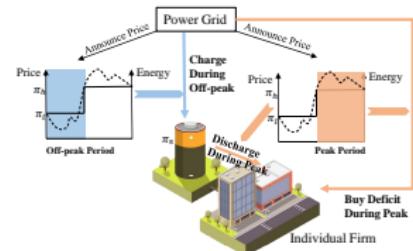


Figure: Electricity Storage (electricity demand distribution).

Figure: Electricity Procurement (forecast error distribution).

Electricity Procurement Model

The mathematical formulation:

$$Q_i = \pi_d \cdot S_i + \pi_{eq} \cdot M_i \quad (1)$$

$$\pi_{eq} = \begin{cases} \pi_u, & M > 0 \\ 0, & M = 0 \\ \pi_o, & M < 0 \end{cases} \quad (2)$$

- π_d : the electricity price in the day-ahead market;
- \hat{L}_i : the forecast electricity demand for player i ;
- s_i : the strategic electricity procurement for player i ;
- e_i : the demand forecast error, $e_i = \hat{L}_i - L_i$, where L_i is the actual demand;
- π_{eq} : the trading electricity price in the real-time market.

$$S_i = \hat{L}_i - s_i, \quad M_i = s_i - e_i, \quad Q = \sum_{i=1}^N Q_i \quad (3)$$

Electricity Procurement Model

Lemma (The Optimal Strategy)

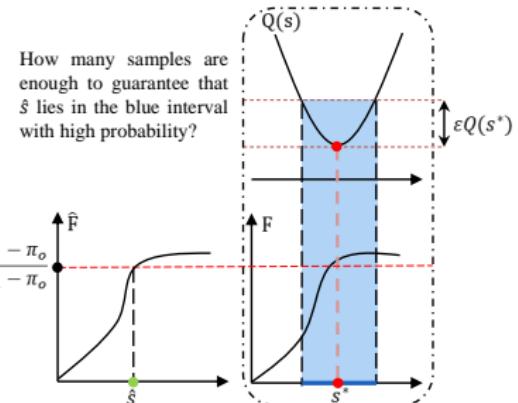
If $\frac{\partial \mathbb{E}\{e_i|e=\beta\}}{\partial \beta} \geq 0, \forall i$ holds, then the optimal strategy is unique and given by

$$s_i^* = \mathbb{E}\{e_i|e = s^*\}, \quad (4)$$

where

$$s^* = F_e^{-1} \left(\frac{\pi_d - \pi_o}{\pi_u - \pi_o} \right). \quad (5)$$

- **Authentic Samples:** $\{x_1, x_2, \dots, x_N\}$;
- **Privacy-Preserving Samples** $\{x_1 + r_1, x_2 + r_2, \dots, x_N + r_N\}$;



Theoretical Analysis

Using Bernstein's inequality and some mathematical tricks, we can prove that (under some conditions and corrections)

Theorem (Authentic Case)

For any $\varepsilon > 0$, with probability at least δ , the SAA-based solution \hat{s}^ϕ satisfies $Q(\hat{s}^\phi) - Q(s^*) \leq \varepsilon|Q(s^*)|$ given N samples, where

$$N \geq \frac{4 \log\left(\frac{2}{1-\delta}\right)}{\varepsilon|Q(s^*)|f(s^*)\eta}. \quad (6)$$

Theorem (Privacy-preserving Case)

For any $\varepsilon > 0$, with probability at least δ , the SAA-based solution \tilde{s}^ϕ satisfies $Q(\tilde{s}^\phi) - Q(s^*) \leq \varepsilon|Q(s^*)|$ given N samples, where

$$N \geq \frac{12 + 4\kappa(\pi_u - \pi_o)/(\pi_u - \pi_d)}{3\varepsilon|Q(s^*)|f(s^*)\eta} \log\left(\frac{2}{1-\delta}\right). \quad (7)$$

Performance Analysis

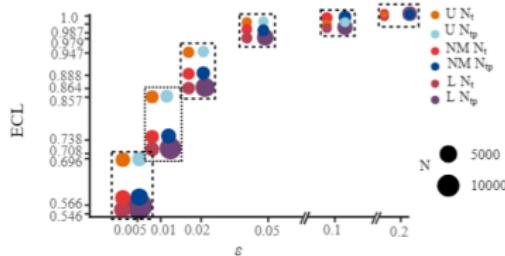


Fig. 4. Sample complexity comparison (Lemma 3.2 & Theorem 4.3) for varying performance guarantees. N_t and N_{tp} illustrate the number of samples obtained from Lemma 3.2 and Theorem 4.3, respectively. In each dashed box, ϵ is the same.

TABLE II
SAMPLE COMPLEXITY ANALYSIS FOR DIFFERENT PRIVACY LEVELS.

ϵ	N_{bp}	N_{tp}	ϵ	N_{bp}	N_{tp}
0.001	2.39E+08	1.57E+06	0.1	9.33E+04	594
0.01	2.46E+06	1.62E+04	0.2	7.53E+04	476
0.05	1.65E+05	1.07E+03	0.5	7.03E+04	443

- When $\epsilon \geq 0.1$, the change rate of the required theoretical number of samples is slower.

Theoretical bounds provide **quantitative analysis** for required samples to ensure the performance of decision-making.

Ref:

1. Jiang, W., Huang, J., Xu, G., & Wu, C. (2023). Sample-Oriented Electricity Storage Sharing Mechanism Design With Performance Guarantees. *IEEE Transactions on Smart Grid*.
2. Jiang, W. & Wu, C. (2023). Optimal Electricity Procurement Enabled by Privacy-Preserving Samples. *Revision submitted to IEEE Transactions on Energy Markets, Policy, and Regulation*.

Thank you for your listening!

wenqianjiang@link.cuhk.edu.cn

香港中文大學(深圳)理工學院
School of Science and Engineering