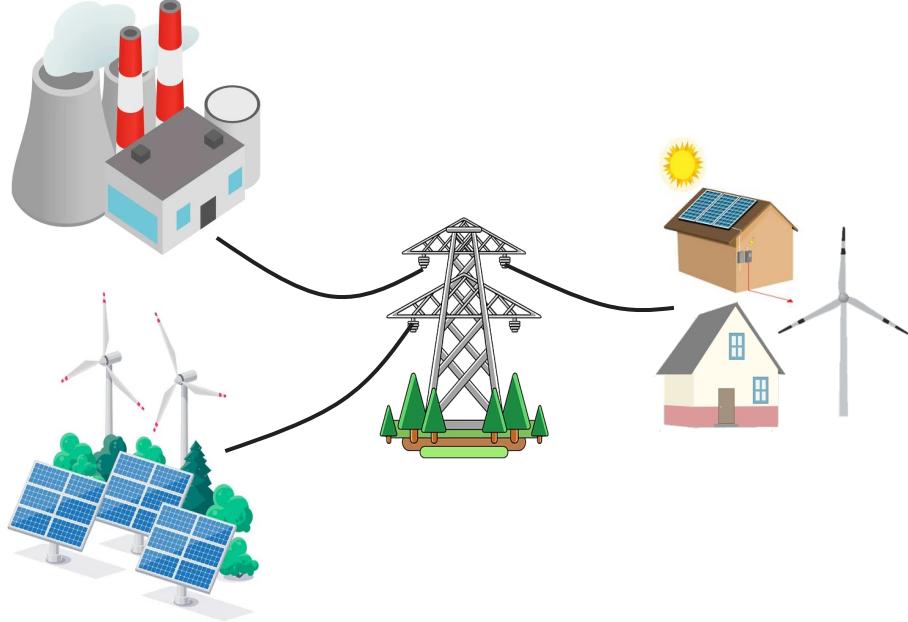
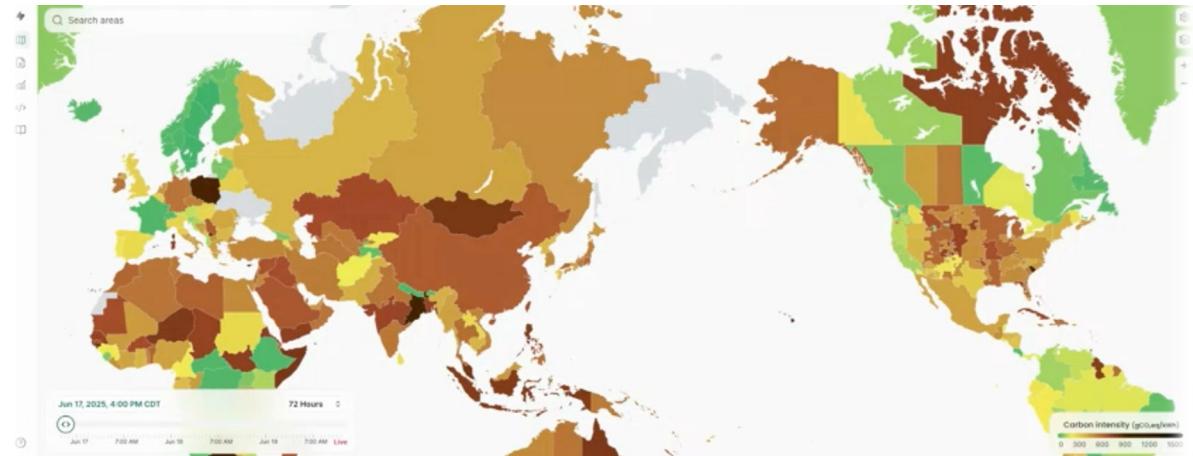
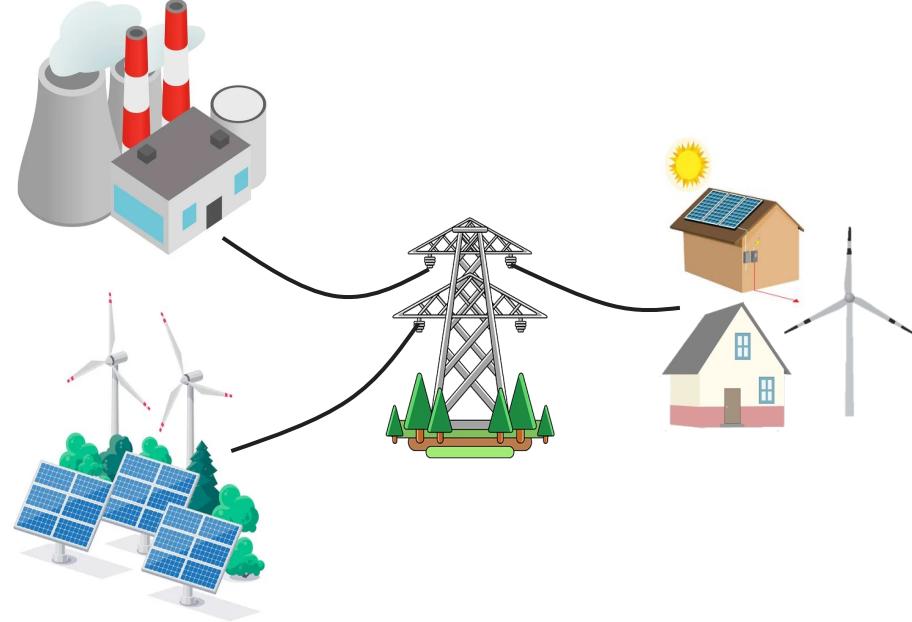


Electricity Markets with Consumer-based Carbon Costs: A New Paradigm for Greening the Grid

Wenqian Jiang, Aditya Rangarajan, and Line Roald


Optimization of Power Systems Session, INFORMS Annual Meeting

October 26, 2025



Carbon Emission in Power Systems

Electricity generation produces carbon emissions.

Carbon Emission in Power Systems

source: Electricity Maps (accessed on Oct.25, 2025).
<https://app.electricitymaps.com/map/72h/hourly>

Carbon emissions **vary with time and/or location.**

Carbon-Sensitive Electrical Loads

- ▶ An increasing number of **carbon-sensitive loads!**

Electricity consumers are willing to **adapt the timing and/or location of their electricity usage to minimize carbon footprints.**

Carbon-Sensitive Electrical Loads

► An increasing number of **carbon-sensitive loads!**

Electricity consumers are willing to **adapt the timing and/or location of their electricity usage to minimize carbon footprints** (even through paying more).

“Apple uses data that combines grid, emissions, and weather information into one, **easy-to-follow signal.**” <https://shorturl.at/kvQRV>

Google shifts data center loads:
<https://ieeexplore.ieee.org/document/9770383>

National Grid “Green Light Signal” tells consumers **when carbon intensity is low!**

<https://www.nationalgrid.com/greenlightsignal>

Carbon-Sensitive Electrical Loads

► An increasing number of **carbon-sensitive loads!**

Electricity consumers are willing to **adapt the timing and/or location of their electricity usage to minimize carbon footprints** (even through paying more).

- **Voluntarily** (to help mitigate climate change)

- **To receive subsidies** (e.g. clean hydrogen production tax credits) or **higher prices** (green vs grey hydrogen)

Green hydrogen now costs USD 4-6/kilogram (kg), 2-3 times more than grey hydrogen. The largest

IRENA (2021), ***Making the breakthrough: Green hydrogen policies and technology costs***, International Renewable Energy Agency, Abu Dhabi.

Carbon Intensity (kg CO ₂ e per kg H ₂)	Max Hydrogen Production Tax Credit (\$/kg H ₂)
4-2.5	\$0.60
2.5-1.5	\$0.75
1.5-0.45	\$1.00
<0.45	\$3.00

source: <https://www.energy.gov/eere/fuelcells/financial-incentives-hydrogen-and-fuel-cell-projects>

Carbon-Sensitive Electrical Loads

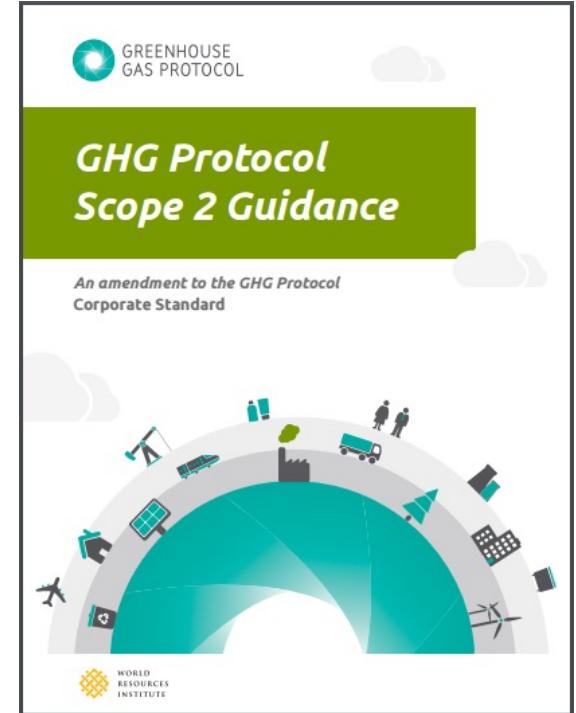
► An increasing number of **carbon-sensitive loads!**

Electricity consumers are willing to **adapt the timing and/or location of their electricity usage to minimize carbon footprints** (even through paying more).

To enable such carbon-aware practices, carbon-sensitive consumers require that

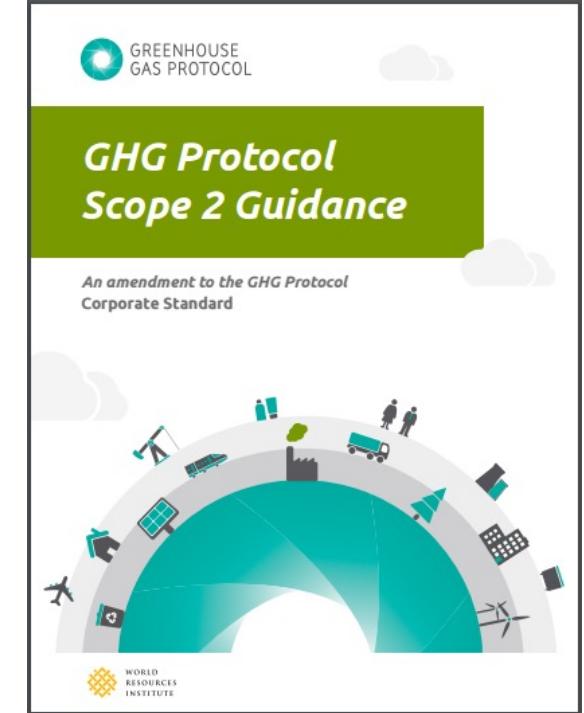
- Real-time “carbon signals”
- An associated framework that supports carbon accounting for electricity usage

*I want to reduce
my carbon
footprints!*


**Carbon-sensitive
consumers**

Carbon Emission Accounting of Electricity Usage

- ▶ Market-based methods: Renewable Energy Certificates or Power Purchase Agreements.



Current Carbon Accounting from GHG Protocol

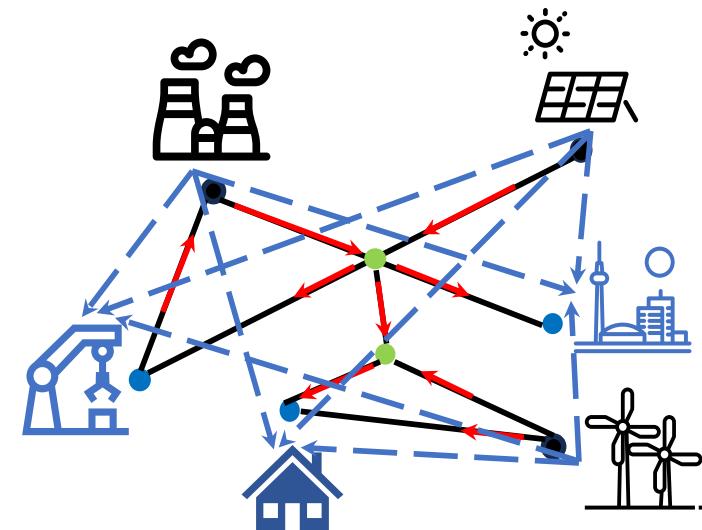
- ▶ Market-based methods: Renewable Energy Certificates or Power Purchase Agreements.
- ▶ Location-based methods: Average Carbon Emission.

Current Carbon Accounting from GHG Protocol

- ▶ Market-based methods: Renewable Energy Certificates

- ▶ Location-based methods: Average Carbon Emission.

Can we integrate carbon emissions into the electricity market and simultaneously achieve carbon accounting?



Carbon Cost Model

► Core Idea: Introduce consumers' carbon preferences and carbon allocation into the electricity market!

- Consumer-defined carbon costs
 - Reflect how much revenue the consumer is willing to “forgo” to avoid carbon emissions.
- Carbon allocation mechanism
 - Allocate carbon emissions directly from generators to consumers without considering the physical power grid.

Carbon Cost Model

Consumer-based Carbon Costs

Carbon-aware Objective

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^\top P_D - c_D^\top E_D - c_G^\top P_G$$

(1a) Carbon costs

$$s.t. \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g},$$

(1b)

$\forall i \in \mathcal{N}$,

$$\beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L},$$

(1c)

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L},$$

(1d)

$$P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max}, \quad \forall g \in \mathcal{G},$$

(1e)

$$P_{D,d}^{\min} \leq P_{D,d} \leq P_{D,d}^{\max}, \quad \forall d \in \mathcal{D},$$

(1f)

$$\theta_{\text{ref}} = 0,$$

(1g)

Nodal power balance

Transmission line limit

Generation capacity limit

Demand flexibility limit

Ref. bus voltage

Standard DCOPF Constraints

$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G},$$

(1h)

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D},$$

(1i)

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D},$$

(1j)

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}.$$

(1k)

Carbon Allocation

Consumer-based Carbon Costs

Carbon-aware Objective

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^\top P_D - c_D^\top E_D - c_G^\top P_G \quad (1a)$$

$$s.t. \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g}, \quad (1b)$$

$$\forall i \in \mathcal{N},$$

$$\beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1c)$$

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1d)$$

$$P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max}, \quad \forall g \in \mathcal{G}, \quad (1e)$$

$$P_{D,d}^{\min} \leq P_{D,d} \leq P_{D,d}^{\max}, \quad \forall d \in \mathcal{D}, \quad (1f)$$

$$\theta_{\text{ref}} = 0, \quad (1g)$$

Nodal power balance

Standard DCOPF Constraints

Transmission line limit

Generation capacity limit

Demand flexibility limit

Ref. bus voltage

$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad (1h)$$

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1i)$$

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1j)$$

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}. \quad (1k)$$

Carbon Allocation

Standard DCOPF Constraints

Carbon-aware
Objective

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^\top P_D - \mathbf{c}_D^\top E_D - c_G^\top P_G \quad (1a)$$

$$s.t. \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g}, \quad (1b)$$

$$\forall i \in \mathcal{N},$$

$$\beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1c)$$

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1d)$$

$$P_{G,g}^{\text{min}} \leq P_{G,g} \leq P_{G,g}^{\text{max}}, \quad \forall g \in \mathcal{G}, \quad (1e)$$

$$P_{D,d}^{\text{min}} \leq P_{D,d} \leq P_{D,d}^{\text{max}}, \quad \forall d \in \mathcal{D}, \quad (1f)$$

$$\theta_{\text{ref}} = 0, \quad (1g)$$

Nodal power balance

Transmission line limit

Generation capacity limit

Demand flexibility limit

Ref. bus voltage

Standard DCOPF
Constraints

Carbon Allocation

$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad (1h)$$

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1i)$$

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1j)$$

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}. \quad (1k)$$

Carbon Allocation Mechanism

Carbon-aware Objective

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^\top P_D - c_D^\top E_D - c_G^\top P_G \quad (1a)$$

$$\text{s.t. } \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g}, \quad (1b)$$

$$\forall i \in \mathcal{N},$$

$$\beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1c)$$

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1d)$$

$$P_{G,g}^{\text{min}} \leq P_{G,g} \leq P_{G,g}^{\text{max}}, \quad \forall g \in \mathcal{G}, \quad (1e)$$

$$P_{D,d}^{\text{min}} \leq P_{D,d} \leq P_{D,d}^{\text{max}}, \quad \forall d \in \mathcal{D}, \quad (1f)$$

$$\theta_{\text{ref}} = 0, \quad (1g)$$

Standard DCOPF Constraints

$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad (1h)$$

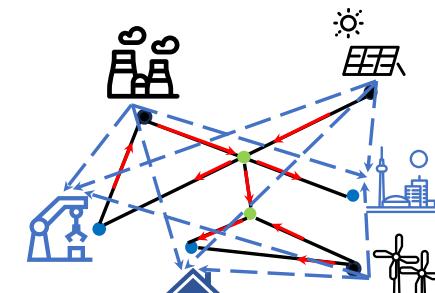
$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1i)$$

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1j)$$

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}. \quad (1k)$$

Carbon Allocation

Maximize social welfare under consumer-defined carbon costs


Nodal power balance

Transmission line limit

Generation capacity limit

Demand flexibility limit

Ref. bus voltage

Carbon Allocation Mechanism

Carbon-aware Objective

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^T P_D - c_D^T E_D - c_G^T P_G \quad (1a)$$

$$\text{s.t. } \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g}, \quad (1b)$$

$$\forall i \in \mathcal{N},$$

$$\beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1c)$$

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1d)$$

$$P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max}, \quad \forall g \in \mathcal{G}, \quad (1e)$$

$$P_{D,d}^{\min} \leq P_{D,d} \leq P_{D,d}^{\max}, \quad \forall d \in \mathcal{D}, \quad (1f)$$

$$\theta_{\text{ref}} = 0, \quad (1g)$$

Nodal power balance

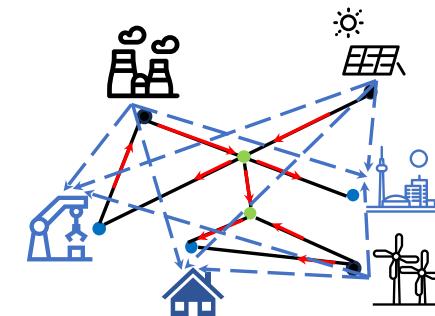
Transmission line limit

Generation capacity limit

Demand flexibility limit

Ref. bus voltage

Standard DCOPF Constraints


$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad (1h)$$

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1i)$$

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1j)$$

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}. \quad (1k)$$

Carbon Allocation

Carbon Allocation Results

Carbon-aware Objective

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^\top P_D - c_D^\top E_D - c_G^\top P_G \quad (1a)$$

$$s.t. \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g},$$

$$\forall i \in \mathcal{N}, \quad (1b)$$

$$\beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1c)$$

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\text{lim}}, \quad \forall (i, j) \in \mathcal{L}, \quad (1d)$$

$$P_{G,g}^{\text{min}} \leq P_{G,g} \leq P_{G,g}^{\text{max}}, \quad \forall g \in \mathcal{G}, \quad (1e)$$

$$P_{D,d}^{\text{min}} \leq P_{D,d} \leq P_{D,d}^{\text{max}}, \quad \forall d \in \mathcal{D}, \quad (1f)$$

$$\theta_{\text{ref}} = 0, \quad (1g)$$

$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad (1h)$$

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1i)$$

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1j)$$

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}. \quad (1k)$$

Carbon Allocation

- Allocate lower carbon power to consumers with higher carbon costs.

Special Versions of Carbon Cost Model

Carbon-aware Objective

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^\top P_D - c_D^\top E_D - c_G^\top P_G \quad (1a)$$

$$s.t. \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g},$$

$$\forall i \in \mathcal{N}, \quad (1b)$$

$$\beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\lim}, \quad \forall (i, j) \in \mathcal{L}, \quad (1c)$$

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\lim}, \quad \forall (i, j) \in \mathcal{L}, \quad (1d)$$

$$P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max}, \quad \forall g \in \mathcal{G}, \quad (1e)$$

$$P_{D,d}^{\min} \leq P_{D,d} \leq P_{D,d}^{\max}, \quad \forall d \in \mathcal{D}, \quad (1f)$$

$$\theta_{\text{ref}} = 0, \quad (1g)$$

$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad (1h)$$

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1i)$$

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1j)$$

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}. \quad (1k)$$

Carbon Allocation

- When $c_D = 0$, it's equal to **standard market clearing** (carbon-agnostic).

- When c_D are identical, it's equal to adding a **unifying carbon tax on generators**.

How Non-Uniform Carbon Costs Impact?

Carbon-aware Objective

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^\top P_D - c_D^\top E_D - c_G^\top P_G \quad (1a)$$

$$s.t. \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g},$$

$$\forall i \in \mathcal{N}, \quad (1b)$$

$$\beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\lim}, \quad \forall (i, j) \in \mathcal{L}, \quad (1c)$$

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\lim}, \quad \forall (i, j) \in \mathcal{L}, \quad (1d)$$

$$P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max}, \quad \forall g \in \mathcal{G}, \quad (1e)$$

$$P_{D,d}^{\min} \leq P_{D,d} \leq P_{D,d}^{\max}, \quad \forall d \in \mathcal{D}, \quad (1f)$$

$$\theta_{\text{ref}} = 0, \quad (1g)$$

Carbon Allocation

$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad (1h)$$

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1i)$$

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1j)$$

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}. \quad (1k)$$

- What if $c_D \neq 0$ and the c_D values are not identical?

- How will prices change?
Who pays for the higher generation cost?

Equivalent Equilibrium Formulation

Single Optimization Problem

$$\max_{P_G, P_D, \theta, \pi, E_D} u_D^\top P_D - c_D^\top E_D - c_G^\top P_G \quad (1a)$$

$$\text{s.t. } \sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g}, \quad (1b)$$

$$\forall i \in \mathcal{N}, \quad \beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\lim}, \quad \forall (i, j) \in \mathcal{L}, \quad (1c)$$

$$\beta_{ij}(\theta_i - \theta_j) \geq -F_{ij}^{\lim}, \quad \forall (i, j) \in \mathcal{L}, \quad (1d)$$

$$P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max}, \quad \forall g \in \mathcal{G}, \quad (1e)$$

$$P_{D,d}^{\min} \leq P_{D,d} \leq P_{D,d}^{\max}, \quad \forall d \in \mathcal{D}, \quad (1f)$$

$$\theta_{\text{ref}} = 0, \quad (1g)$$

$$\sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad (1h)$$

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1i)$$

$$\sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \quad (1j)$$

$$\pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D}. \quad (1k)$$

Generators: Profit maximization

$$\max_{P_{G,g}} (\lambda_{P,i: g \in \mathcal{G}_i} + \lambda_{G,g} - c_{G,g}) \cdot P_{G,g}$$

$$\text{s.t. } P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max}.$$

Transmission Owner: Profit maximization

$$\max_{\theta} \sum_i \lambda_{P,i} \cdot \left(\sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_j - \theta_i) \right)$$

$$\text{s.t. } -F_{ij}^{\lim} \leq \beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\lim}, \quad \forall (i, j) \in \mathcal{L},$$

$$\theta_{\text{ref}} = 0,$$

Price Setter: Enforce the nodal power balance constraint

$$\sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j: (i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g}, \quad : \lambda_{P,i},$$

Carbon Manager: Total carbon cost minimization

$$\max_{\pi, E_D} -c_D^\top E_D$$

$$\text{s.t. } \sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad : \lambda_{G,g} \quad \sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D},$$

$$\sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad : \lambda_{D,d} \quad \pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \quad \forall d \in \mathcal{D},$$

**Equilibrium
Formulation**

Carbon-Adjustments

Generators: Profit maximization

$$\begin{aligned} \max_{P_{G,g}} & (\lambda_{P,i:g \in \mathcal{G}_i} + \lambda_{G,g} - c_{G,g}) \cdot P_{G,g} \\ \text{s.t.} & P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max}. \end{aligned}$$

Transmission Owner: Profit maximization

$$\begin{aligned} \max_{\theta} & \sum_i \lambda_{P,i} \cdot \left(\sum_{j:(i,j) \in \mathcal{L}} \beta_{ij}(\theta_j - \theta_i) \right) \\ \text{s.t.} & -F_{ij}^{\lim} \leq \beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\lim}, \quad \forall (i, j) \in \mathcal{L}, \\ & \theta_{ref} = 0, \end{aligned}$$

Price Setter: Enforce the nodal power balance constraint

$$\sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j:(i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g}, \quad : \lambda_{P,i},$$

Carbon Manager: Total carbon cost minimization

$$\begin{aligned} \max_{\pi, E_D} & -c_D^\top E_D \\ \text{s.t.} & \sum_{d \in \mathcal{D}} \pi_{g,d} = P_{G,g}, \quad \forall g \in \mathcal{G}, \quad : \lambda_{G,g} \\ & \sum_{g \in \mathcal{G}} \pi_{g,d} = P_{D,d}, \quad \forall d \in \mathcal{D}, \quad : \lambda_{D,d} \\ & \sum_{g \in \mathcal{G}} e_{G,g} \pi_{g,d} = E_{D,d}, \quad \forall d \in \mathcal{D}, \\ & \pi_{g,d} \geq 0, \quad \forall g \in \mathcal{G}, \forall d \in \mathcal{D}, \end{aligned}$$

Consumers: Utility maximization

$$\begin{aligned} \max_{P_{D,d}} & (u_{D,d} - \lambda_{P,i:d \in \mathcal{D}_i} + \lambda_{D,d}) \cdot P_{D,d} \\ \text{s.t.} & P_{D,d}^{\min} \leq P_{D,d} \leq P_{D,d}^{\max}. \end{aligned}$$

Equilibrium Formulation

Theorem (Ordering of Carbon-Adjustments):

Theorem IV.2 (Ordering of Carbon-Adjustments). *For a set of generators \mathcal{G} with increasing emission factors $e_{G,(1)} \leq e_{G,(2)} \leq \dots \leq e_{G,(|\mathcal{G}|)}$, the corresponding generator carbon-adjustments will be decreasing,*

$$\lambda_{G,(1)} \geq \lambda_{G,(2)} \geq \dots \geq \lambda_{G,(|\mathcal{G}|)}.$$

For a set of consumers \mathcal{D} with decreasing carbon-costs $c_{D,(1)} \geq c_{D,(2)} \geq \dots \geq c_{D,(|\mathcal{D}|)}$, the corresponding consumer carbon-adjustments will be increasing,

$$\lambda_{D,(1)} \leq \lambda_{D,(2)} \leq \dots \leq \lambda_{D,(|\mathcal{D}|)}$$

- The higher-emitting generators are penalized with lower carbon-adjustments.
- The consumers submitting higher carbon costs contribute more to cover the increases in generation cost that arise from prioritizing low-carbon generation.

Takeaways

- We propose a new green electricity market clearing with consumer-based carbon costs and carbon allocation.
- The equivalent equilibrium formulation gives rise to carbon-adjusted prices. Low-carbon generators and carbon-sensitive consumers will face higher carbon-adjusted prices.

Scan to access
paper preprint!

Thank you!
Wenqian Jiang
wenqian.jiang@wisc.edu

Selected References

- Jiang, W., & Roald, L. (2025). Greening the Grid: Electricity Market Clearing with Consumer-Based Carbon Cost. IREP 2025.
- Jiang, W., Rangarajan, A., & Roald, L. (2025). Consumer-based Carbon Costs: Integrating Consumer Carbon Preferences in Electricity Markets. In submission.

Other related works from our group

Consider Carbon Emission in Market Clearing

► Carbon tax model

Without Carbon Tax:

$$\max_{P_G, P_D} u_D^\top P_D - c_G^\top P_G$$

With Carbon Tax:

$$\max_{P_G, P_D} u_D^\top P_D - (c_G^\top + \mathbf{c}_{CO_2} \mathbf{e}_G^\top) P_G$$

- **Change generator merit order** and make renewables competitive.
- “Carbon bill” allocation on consumers through **higher prices**.
- Politically difficult to determine an **adequate carbon tax**.
- It’s not clear to consumers that this model is the “best” choice to pay for carbon bills.

Analysis for IEEE RTS-GMLC Case

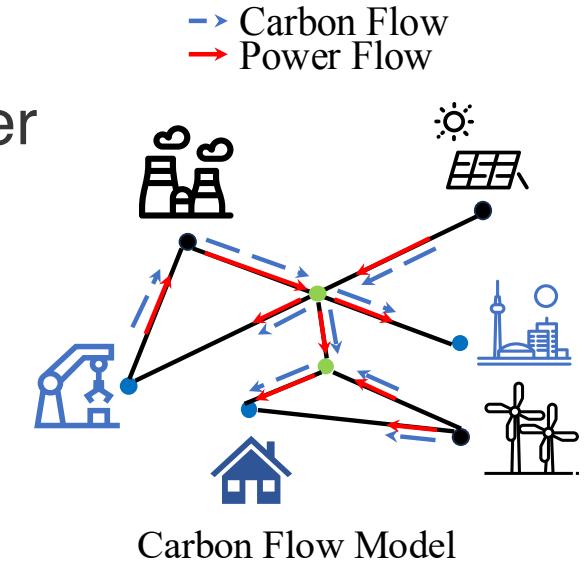
IEEE RTS-GMLC System: 73buses, 158 generators, and 120 Lines

Four generator fuel types: Natural gas(0.6), Oil (0.74), Coal (0.96), Renewable (0)

TABLE III

THE IMPACT OF DIFFERENT CARBON COSTS ON GENERATION DISPATCH, SYSTEM EMISSIONS, AND OBJECTIVE FUNCTION COMPONENTS.

Cases	Total Generation [MWh]	Total Generation Cost [\$]	Total Carbon [tons]	Average Carbon [tons/MWh]	$u_d^\top P_d$ [\$]	$c_{co_2}^\top E_d$ [\$]	Optimal Objective Values [\$]
P(2)	8550	63748	3001.8	0.351	457039	0	393291
P(3)	8550	63748	3001.8	0.351	457039	0	393291
[10, 20]	8550	64723.4	2866.9	0.335	457039	35591.4	356724.2
[10, 40]	8550	65468.5	2804	0.328	457039	50088.7	341481.8
[30, 60]	8263.3	61675.1	2594.6	0.314	448896.9	99168.8	288053
[50, 80]	8063.2	58907	2473.7	0.307	439138.2	143270.5	236960.7


Benchmarks: Fixed maximum loads and carbon-agnostic case when all $c_D = 0$.

Consider Carbon Emission in Market Clearing

► Carbon flow model

- Carbon emissions are virtually attached to the power flowing from generators to loads.
- Proportional sharing assumption.
- Node carbon intensity can be calculated and limited.

- Difficult to determine **adequate carbon limits**.
- It's not clear that the proportional sharing assumption is a “right” definition for carbon flow tracing.

More Extension

- ▶ **Equilibrium framework instead of sequential framework on carbon signal design for load shifting to reduce carbon emissions** (submitted to CDC 2025, preprint: <https://arxiv.org/pdf/2504.07248>).

More Extension

- ▶ **Equilibrium framework** instead of sequential framework on **carbon signal design for load shifting to reduce carbon emissions** (submitted to CDC 2025, preprint: <https://arxiv.org/pdf/2504.07248>).

- **Sequential framework¹**

Step 1: System operator solves DC OPF to clear the market.

Step 2: Compute locational marginal carbon emissions per bus using LP sensitivity analysis

Step 3: Carbon-sensitive loads determine optimal load shifts based on marginal emissions.

1. Lindberg, J., Abdennadher, Y., Chen, J., Lesieutre, B. C., & Roald, L. (2021, June). A guide to reducing carbon emissions through data center geographical load shifting. In *Proceedings of the Twelfth ACM International Conference on Future Energy Systems* (pp. 430-436).

More Extension

- ▶ **Equilibrium framework** instead of sequential framework on **carbon signal design for load shifting to reduce carbon emissions** (submitted to CDC 2025, preprint: <https://arxiv.org/pdf/2504.07248>).

- **Equilibrium framework**

Generators:

$$\max_{P_{G,g}} (p_{i:g \in \mathcal{G}_i} - c_{G,g}) \cdot P_{G,g}$$

$$s.t. \quad P_{G,g}^{\min} \leq P_{G,g} \leq P_{G,g}^{\max},$$

Consumers:

$$\max_{P_{D,d}} (r_{D,d} - p_{i:d \in \mathcal{D}_i} - \lambda \cdot c_{D,d}) \cdot P_{D,d}$$

$$s.t. \quad P_{D,d}^{\min} \leq P_{D,d} \leq P_{D,d}^{\max},$$

Transmission Owner: $\max_{\theta_i} \sum_i p_i \cdot \left(\sum_{j:(i,j) \in \mathcal{L}} \beta_{ij}(\theta_j - \theta_i) \right) \quad s.t. \quad -F_{ij}^{\lim} \leq \beta_{ij}(\theta_i - \theta_j) \leq F_{ij}^{\lim}, \quad \forall (i,j) \in \mathcal{L},$
 $\theta_{ref} = 0,$

Price-setter: $\sum_{d \in \mathcal{D}_i} P_{D,d} + \sum_{j:(i,j) \in \mathcal{L}} \beta_{ij}(\theta_i - \theta_j) = \sum_{g \in \mathcal{G}_i} P_{G,g} \quad : p$

Average carbon emission: $\lambda \sum_{d \in \mathcal{D}} P_{D,d} = \sum_{g \in \mathcal{G}} e_{G,g} \cdot P_{G,g},$

Equilibrium Analysis Introduction

- Primal Centralized Problem

$$\max_{P_g, P_d} (u^\top P_d - c^\top P_g)$$

$$s.t. \sum_{l \in \mathcal{G}} P_{g,l} \geq \sum_{l \in \mathcal{D}} P_{d,l}, \quad (: \omega),$$

$$P_{g,i}^{\min} \leq P_{g,i} \leq P_{g,i}^{\max}, \quad \forall i \in \mathcal{G}, \quad (: v_i^{\max}, v_i^{\min}),$$

$$P_{d,i}^{\min} \leq P_{d,i} \leq P_{d,i}^{\max}, \quad \forall i \in \mathcal{D}, \quad (: \gamma_i^{\max}, \gamma_i^{\min}).$$

- KKT Conditions

$$0 \in c_i - \omega + v_i^{\max} - v_i^{\min}, \quad \forall i \in \mathcal{G},$$

$$0 \in \omega - u_i + \gamma_i^{\max} - \gamma_i^{\min}, \quad \forall i \in \mathcal{D},$$

$$0 \leq \omega \perp \sum_{l \in \mathcal{G}} P_{g,l} - \sum_{l \in \mathcal{D}} P_{d,l} \geq 0,$$

$$0 \leq v_i^{\max} \perp P_{g,i}^{\max} - P_{g,i} \geq 0, \quad \forall i \in \mathcal{G},$$

$$0 \leq v_i^{\min} \perp P_{g,i}^- P_{g,i}^{\min} \geq 0, \quad \forall i \in \mathcal{G},$$

$$0 \leq \gamma_i^{\max} \perp P_{d,i}^{\max} - P_{d,i} \geq 0, \quad \forall i \in \mathcal{D},$$

$$0 \leq \gamma_i^{\min} \perp P_{d,i} - P_{d,i}^{\min} \geq 0, \quad \forall i \in \mathcal{D}.$$

Equivalent

- Primal Equilibrium Problem

$$\text{Generators: } \max_{P_{g,l}} (p - c_l) P_{g,l}$$

$$s.t. \quad P_{g,l}^{\min} \leq P_{g,l} \leq P_{g,l}^{\max}, \quad (: v_i^{\max}, v_i^{\min}).$$

$$\text{Consumers: } \max_{P_{d,l}} (u_l - p) \cdot P_{d,l}$$

$$s.t. \quad P_{d,l}^{\min} \leq P_{d,l} \leq P_{d,l}^{\max}, \quad (: \gamma_i^{\max}, \gamma_i^{\min}).$$

$$\text{Price-setter Problem: } 0 \leq p \perp \sum_{l \in \mathcal{G}} P_{g,l} - \sum_{l \in \mathcal{D}} P_{d,l} \geq 0$$

- KKT Conditions

$$0 \in c_i - p + v_i^{\max} - v_i^{\min}, \quad \forall i \in \mathcal{G},$$

$$0 \in p - u_i + \gamma_i^{\max} - \gamma_i^{\min}, \quad \forall i \in \mathcal{D},$$

$$0 \leq p \perp \sum_{l \in \mathcal{G}} P_{g,l} - \sum_{l \in \mathcal{D}} P_{d,l} \geq 0,$$

$$0 \leq v_i^{\max} \perp P_{g,i}^{\max} - P_{g,i} \geq 0, \quad \forall i \in \mathcal{G},$$

$$0 \leq v_i^{\min} \perp P_{g,i}^- P_{g,i}^{\min} \geq 0, \quad \forall i \in \mathcal{G},$$

$$0 \leq \gamma_i^{\max} \perp P_{d,i}^{\max} - P_{d,i} \geq 0, \quad \forall i \in \mathcal{D},$$

$$0 \leq \gamma_i^{\min} \perp P_{d,i} - P_{d,i}^{\min} \geq 0, \quad \forall i \in \mathcal{D}.$$