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UNDERSTANDING USER BEHAVIOR IS A KEY ENHBLER

= Active distribution network is crucial to the operation of a power grid with high
penetration of renewable energies.

= And understanding user behaviors is a key enabler of active distribution network.

= How to understand user behaviors?

= What are the practical challenges?

Source: https://www.varonis.com/blog/what-is-user-behavior-analytics
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CONVENTIONAL WISDOM

= The conventional wisdom is to conduct user profiling (i.e.,
clustering).

= Though effective, it faces several practical obstacles.

= Clustering requires massive data and each single data holder
may not have enough data to understand all kinds of users.

= Also, data are the crucial assets for each data holder. Hence, data Source @nc.

holders may not want to directly exchange the data with each
other.
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OUR IDEA

= Distributed User Profiling Based on Federated Learning & Dictionary Learning

= Our idea is based on a simple observation:
= Each user’s data are the energy consumption aggregation of all its appliances.

= Hence, the energy consumption patterns of those appliances can serve as the dictionary,
which is used to construct the user’s energy consumption data.

= If the dictionary is rich, then the user profiling can be done more accurately.

= Hence, we propose that each data holder first conducts the dictionary learning

based on its own data, and then exchange the dictionary with each other based on
the federated learning framework.
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STEP 1
SHIFT-INVARIANT DICTIONARY LEARNING FOR USER PROFILING
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STEP 2:
FEDERATED SHIFT-INVARIANT DICTIONARY LEARNING CLUSTERING
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NUMERICAL EVALUATION

TABLE I: Clustering Performance Comparison.

Dicti | : hel i— cl:g?:::ng mfa-m Gl shlz:)c B

ictionary learning Aeips h-score 0.9203 0.8714 | 0.7253 | 0.8942 | 0.8906
c-score 0.9453 0.9053 | 0.7451 | 0.9070 | 0.8934
v-measure 0.9322 0.8876 | 0.7349 | 0.9004 | 0.8920

M Dictionary learning hetter reveals the load series patterns.

TABLE II: Performance Comparison between Centralized SIDL
Clustering and Federated SIDL Clustering.

Distributed lmplementatlon Method v-measure | h-score | c-score | Comp. Time
comes with a cost. Central 0.9322 0.9203 | 0.9453 264min
Federated 09115 0.8972 | 0.9269 52min

B The federated framework significantly improves the computation efficiency at the cost
of slightly reduced v-measure, h-score and c-score.
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